7α-Thiomethylspironolactone
| Clinical data | |
|---|---|
| Other names | 7α-TMS; SC-26519; 17α-Hydroxy-7α-(methylthio)-3-oxopregn-4-ene-21-carboxylic acid γ-lactone |
| Drug class | Antimineralocorticoid |
| Identifiers | |
| |
| CAS Number | |
| PubChem CID | |
| ChemSpider | |
| UNII | |
| ChEMBL | |
| CompTox Dashboard (EPA) | |
| Chemical and physical data | |
| Formula | C23H32O3S |
| Molar mass | 388.57 g·mol−1 |
| 3D model (JSmol) | |
| |
| |
7α-Thiomethylspironolactone (7α-TMS; developmental code name SC-26519) is a steroidal antimineralocorticoid and antiandrogen of the spirolactone group and the major active metabolite of spironolactone. Other important metabolites of spironolactone include 7α-thiospironolactone (7α-TS; SC-24813), 6β-hydroxy-7α-thiomethylspironolactone (6β-OH-7α-TMS), and canrenone (SC-9376).
Spironolactone is a prodrug with a short terminal half-life of 1.4 hours. The active metabolites of spironolactone have extended terminal half-lives of 13.8 hours for 7α-TMS, 15.0 hours for 6β-OH-7α-TMS, and 16.5 hours for canrenone, and accordingly, these metabolites are responsible for the therapeutic effects of the drug.
7α-TS and 7α-TMS have been found to possess approximately equivalent affinity for the rat ventral prostate androgen receptor (AR) relative to that of spironolactone. The affinity of 7α-TS, 7α-TMS, and spironolactone for the rat prostate AR is about 3.0 to 8.5% of that of dihydrotestosterone (DHT).
| Compound | Cmax (day 1) | Cmax (day 15) | AUC (day 15) | t1/2 |
|---|---|---|---|---|
| Spironolactone | 72 ng/mL (173 nmol/L) | 80 ng/mL (192 nmol/L) | 231 ng•hour/mL (555 nmol•hour/L) | 1.4 hours |
| Canrenone | 155 ng/mL (455 nmol/L) | 181 ng/mL (532 nmol/L) | 2,173 ng•hour/mL (6,382 nmol•hour/L) | 16.5 hours |
| 7α-TMS | 359 ng/mL (924 nmol/L) | 391 ng/mL (1,006 nmol/L) | 2,804 ng•hour/mL (7,216 nmol•hour/L) | 13.8 hours |
| 6β-OH-7α-TMS | 101 ng/mL (250 nmol/L) | 125 ng/mL (309 nmol/L) | 1,727 ng•hour/mL (4,269 nmol•hour/L) | 15.0 hours |
| Sources: See template. | ||||
7α-TMS has been found to account for around 80% of the potassium-sparing effect of spironolactone, whereas canrenone accounts for the remaining approximate 10 to 25% of the potassium-sparing effect of the drug.