IEEE 802.11ac-2013

Gen. Vi-
sual
IEEE
standard
Adopt. Link rate
(Mbit/s)
RF
(GHz)
Wi-Fi 802.11 1997 1–2 2.4
Wi-Fi 1 802.11b 1999 1–11 2.4
Wi-Fi 2 802.11a 1999 6–54 5
Wi-Fi 3 802.11g 2003 2.4
Wi-Fi 4 802.11n 2009 6.5–600 2.4, 5
Wi-Fi 5 802.11ac 2013 6.5–6933 5
Wi-Fi 6 802.11ax 2021 0.49608 2.4, 5
Wi-Fi 6E 6
Wi-Fi 7 802.11be 2024 0.423,059 2.4, 5, 6
Wi-Fi 8 802.11bn 100,000 2.4, 5, 6

IEEE 802.11ac-2013 or 802.11ac is a wireless networking standard in the IEEE 802.11 set of protocols (which is part of the Wi-Fi networking family), providing high-throughput wireless local area networks (WLANs) on the 5 GHz band. The standard has been retroactively labelled as Wi-Fi 5 by Wi-Fi Alliance.

The specification has multi-station throughput of at least 1.1 gigabit per second (1.1 Gbit/s) and single-link throughput of at least 500 megabits per second (0.5 Gbit/s). This is accomplished by extending the air-interface concepts embraced by 802.11n: wider RF bandwidth (up to 160 MHz), more MIMO spatial streams (up to eight), downlink multi-user MIMO (up to four clients), and high-density modulation (up to 256-QAM).

The Wi-Fi Alliance separated the introduction of 802.11ac wireless products into two phases ("waves"), named "Wave 1" and "Wave 2". From mid-2013, the alliance started certifying Wave 1 802.11ac products shipped by manufacturers, based on the IEEE 802.11ac Draft 3.0 (the IEEE standard was not finalized until later that year). Subsequently in 2016, Wi-Fi Alliance introduced the Wave 2 certification, which includes additional features like MU-MIMO (downlink only), 160 MHz channel width support, support for more 5 GHz channels, and four spatial streams (with four antennas; compared to three in Wave 1 and 802.11n, and eight in IEEE's 802.11ax specification). It meant Wave 2 products would have higher bandwidth and capacity than Wave 1 products.