Bafilomycin
| Names | |
|---|---|
| IUPAC name
(3Z,5E,7R,8S,9S,11E,13E,15S,16R)-16- [(1S,2R,3S)-3-[(2R,4R,5S,6R)-2,4-dihydroxy-6- isopropyl-5-methyl-2-tetrahydropyranyl]-2- hydroxy-1-methylbutyl]-8-hydroxy-3,15- dimethoxy-5,7,9,11-tetramethyl-1- oxacyclohexadeca-3,5,11,13-tetraen-2-one | |
| Identifiers | |
| ChEMBL | |
| ChemSpider | |
| DrugBank | |
| ECHA InfoCard | 100.150.187 |
PubChem CID |
|
| Properties | |
| C35H58O9 | |
| Molar mass | 622.83 g/mol |
| Appearance | Yellow powder |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Infobox references | |
The bafilomycins are a family of macrolide antibiotics produced from a variety of Streptomycetes. Their chemical structure is defined by a 16-membered lactone ring scaffold. Bafilomycins exhibit a wide range of biological activity, including anti-tumor, anti-parasitic, immunosuppressant and anti-fungal activity. The most used bafilomycin is bafilomycin A1, a potent inhibitor of cellular autophagy. Bafilomycins have also been found to act as ionophores, transporting potassium K+ across biological membranes and leading to mitochondrial damage and cell death.
Bafilomycin A1 specifically targets the vacuolar-type H+ -ATPase (V-ATPase) enzyme, a membrane-spanning proton pump that acidifies either the extracellular environment or intracellular organelles such as the lysosome of animal cells or the vacuole of plants and fungi. At higher micromolar concentrations, bafilomycin A1 also acts on P-type ATPases, which have a phosphorylated transitional state.
Bafilomycin A1 serves as an important tool compound in many in vitro research applications; however, its clinical use is limited by a substantial toxicity profile.