In functional analysis, a branch of mathematics, a Beppo Levi space, named after Beppo Levi, is a certain space of generalized functions.
In the following, D′ is the space of distributions, S′ is the space of tempered distributions in Rn, Dα the differentiation operator with α a multi-index, and  is the Fourier transform of v.
 is the Fourier transform of v.
The Beppo Levi space is
-  :\ D^{\alpha }v\in L^{p}{\text{ for all }}|\alpha |=r\right\}.}
  
 
An alternative definition is as follows: let m ∈ N, s ∈ R such that
 
and define:
-  :\ {\widehat {v}}\in L_{\text{loc}}^{1}(\mathbf {R} ^{n}),\int _{\mathbf {R} ^{n}}|\xi |^{2s}|{\widehat {v}}(\xi )|^{2}\,d\xi <\infty \right\}\\[6pt]X^{m,s}&=\left\{v\in D'\ :\ \forall \alpha \in \mathbf {N} ^{n},|\alpha |=m,D^{\alpha }v\in H^{s}\right\}\\\end{aligned}}}
  
![{\displaystyle {\begin{aligned}H^{s}&=\left\{v\in S'\ :\ {\widehat {v}}\in L_{\text{loc}}^{1}(\mathbf {R} ^{n}),\int _{\mathbf {R} ^{n}}|\xi |^{2s}|{\widehat {v}}(\xi )|^{2}\,d\xi <\infty \right\}\\[6pt]X^{m,s}&=\left\{v\in D'\ :\ \forall \alpha \in \mathbf {N} ^{n},|\alpha |=m,D^{\alpha }v\in H^{s}\right\}\\\end{aligned}}}](./f1ade91d5ece5a6323afa320ce488fe4ac4f8887.svg) 
Then Xm,s is the Beppo-Levi space.