Biology of depression
The biology of depression is the attempt to identify a biochemical origin of depression, as opposed to theories that emphasize psychological or situational causes.
Scientific studies have found that different brain areas show altered activity in humans with major depressive disorder (MDD). Further, nutritional deficiencies in magnesium, vitamin D, and tryptophan have been linked with depression; these deficiencies may be caused by the individual's environment, but they have a biological impact. Several theories concerning the biologically based cause of depression have been suggested over the years, including theories revolving around monoamine neurotransmitters, neuroplasticity, neurogenesis, inflammation and the circadian rhythm. Physical illnesses, including hypothyroidism and mitochondrial disease, can also trigger depressive symptoms.
Neural circuits implicated in depression include those involved in the generation and regulation of emotion, as well as in reward. Abnormalities are commonly found in the lateral prefrontal cortex whose putative function is generally considered to involve regulation of emotion. Regions involved in the generation of emotion and reward such as the amygdala, anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), and striatum are frequently implicated as well. These regions are innervated by a monoaminergic nuclei, and tentative evidence suggests a potential role for abnormal monoaminergic activity.