CCR5-Δ32

CCR5-Δ32 (or CCR5-D32 or CCR5 delta 32) is a genetic variant of the CCR5 gene characterized by a 32-base-pair deletion that produces a nonfunctional receptor on the surface of immune cells, conferring strong resistance to HIV-1 infection in individuals who inherit two copies of the mutation (homozygotes).

CCR5 Δ32 is a 32-base-pair deletion that introduces a premature stop codon into the CCR5 receptor locus, resulting in a nonfunctional receptor. CCR5 is required for M-tropic HIV-1 virus entry. Individuals homozygous (denoted Δ32/Δ32) for CCR5 Δ32 do not express functional CCR5 receptors on their cell surfaces and are resistant to HIV-1 infection, despite multiple high-risk exposures. Individuals heterozygous (+/Δ32) for the mutant allele have a greater than 50% reduction in functional CCR5 receptors on their cell surfaces due to dimerization between mutant and wild-type receptors that interferes with transport of CCR5 to the cell surface. Heterozygote carriers are resistant to HIV-1 infection relative to wild types and when infected, heterozygotes exhibit reduced viral loads and a 2-3-year-slower progression to AIDS relative to wild types. Heterozygosity for this mutant allele also has shown to improve one's virological response to anti-retroviral treatment. CCR5 Δ32 has a heterozygote frequency of 9% in Europe, and a homozygote frequency of 1%.

Recent research indicates that CCR5 Δ32 enhances cognition and memory. In 2016, researchers showed that removing the CCR5 gene from mice significantly improved their memory. CCR5 is a powerful suppressor for neuronal plasticity, learning, and memory; CCR5 over-activation by viral proteins may contribute to HIV-associated cognitive deficits.