Cauchy boundary condition
| Differential equations | 
|---|
| Scope | 
| Classification | 
| Solution | 
| People | 
In mathematics, a Cauchy (French: [koʃi]) boundary condition augments an ordinary differential equation or a partial differential equation with conditions that the solution must satisfy on the boundary; ideally so as to ensure that a unique solution exists. A Cauchy boundary condition specifies both the function value and normal derivative on the boundary of the domain. This corresponds to imposing both a Dirichlet and a Neumann boundary condition. It is named after the prolific 19th-century French mathematical analyst Augustin-Louis Cauchy.