Center (group theory)
| e | b | a | a2 | a3 | ab | a2b | a3b | |
|---|---|---|---|---|---|---|---|---|
| e | e | b | a | a2 | a3 | ab | a2b | a3b | 
| b | b | e | a3b | a2b | ab | a3 | a2 | a | 
| a | a | ab | a2 | a3 | e | a2b | a3b | b | 
| a2 | a2 | a2b | a3 | e | a | a3b | b | ab | 
| a3 | a3 | a3b | e | a | a2 | b | ab | a2b | 
| ab | ab | a | b | a3b | a2b | e | a3 | a2 | 
| a2b | a2b | a2 | ab | b | a3b | a | e | a3 | 
| a3b | a3b | a3 | a2b | ab | b | a2 | a | e | 
In abstract algebra, the center of a group G is the set of elements that commute with every element of G. It is denoted Z(G), from German Zentrum, meaning center. In set-builder notation,
- Z(G) = {z ∈ G | ∀g ∈ G, zg = gz}.
The center is a normal subgroup, , and also a characteristic subgroup, but is not necessarily fully characteristic. The quotient group, G / Z(G), is isomorphic to the inner automorphism group, Inn(G).
A group G is abelian if and only if Z(G) = G. At the other extreme, a group is said to be centerless if Z(G) is trivial; i.e., consists only of the identity element.
The elements of the center are central elements.