DNASE1L1

DNASE1L1
Identifiers
AliasesDNASE1L1, DNAS1L1, DNASEX, DNL1L, G4.8, XIB, deoxyribonuclease I-like 1, deoxyribonuclease 1 like 1
External IDsOMIM: 300081; MGI: 109628; HomoloGene: 4896; GeneCards: DNASE1L1; OMA:DNASE1L1 - orthologs
Orthologs
SpeciesHumanMouse
Entrez

1774

69537

Ensembl

ENSG00000013563

ENSMUSG00000019088

UniProt

P49184

Q9D7J6

RefSeq (mRNA)

NM_001009932
NM_001009933
NM_001009934
NM_001303620
NM_006730

NM_001172154
NM_027109
NM_001370787

RefSeq (protein)

NP_001009932
NP_001009933
NP_001009934
NP_001290549
NP_006721

NP_001165625
NP_081385
NP_001357716

Location (UCSC)Chr X: 154.4 – 154.41 MbChr X: 73.32 – 73.33 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Deoxyribonuclease-1-like 1 is an enzyme that in humans is encoded by the DNASE1L1 gene. It is also known as DNaseX due to its localisation on the X chromosome.

This gene encodes a member of the deoxyribonuclease family and the protein and DNA shows high sequence similarity to lysosomal DNase I. Alternate transcriptional splice variants, encoding the same protein, have been characterized.

The DNase1L1/DNaseX gene was discovered in the early 1990s by Johannes F. Coy as a member of the Molecular Genome Analysis research project at the DKFZ (German Cancer Research Center) in Heidelberg and first published in 1996.

Just like the DNase I enzyme produced by the DNase I gene, the DNase1L1 (DNaseX) enzyme produced by the DNase1L1 (DNaseX) gene cuts double-stranded deoxyribonucleic acid (DNA) molecular chains into pieces. The cutting of DNA into 300-base pair pieces represents the final step in the execution of programmed cell death (apoptosis). Cells can then no longer perform cell division and thus cannot develop into tumor cells. DNase I and DNase1L1 (DNaseX) carry out programmed cell death (apoptosis) and thus protect the human body from the development of tumor cells. Conversely, the absence of DNase enzyme activity leads to the increased formation of tumor cells, as the execution of apoptosis is prevented.