Dini derivative

In mathematics and, specifically, real analysis, the Dini derivatives (or Dini derivates) are a class of generalizations of the derivative. They were introduced by Ulisse Dini, who studied continuous but nondifferentiable functions.

The upper Dini derivative, which is also called an upper right-hand derivative, of a continuous function

is denoted by f+ and defined by

where lim sup is the supremum limit and the limit is a one-sided limit. The lower Dini derivative, f, is defined by

where lim inf is the infimum limit.

If f is defined on a vector space, then the upper Dini derivative at t in the direction d is defined by

If f is locally Lipschitz, then f+ is finite. If f is differentiable at t, then the Dini derivative at t is the usual derivative at t.