FLP-FRT recombination

Site-specific recombinase Flp
Identifiers
OrganismSaccharomyces cerevisiae
SymbolFLP1
UniProtP03870
Search for
StructuresSwiss-model
DomainsInterPro

In genetics, Flp-FRT recombination is a site-directed recombination technology, increasingly used to manipulate an organism's DNA under controlled conditions in vivo. It is analogous to Cre-lox recombination but involves the recombination of sequences between short flippase recognition target (FRT) sites by the recombinase flippase (Flp) derived from the 2 μ plasmid of baker's yeast Saccharomyces cerevisiae.

The 34bp minimal FRT site sequence has the sequence

5'GAAGTTCCTATTCtctagaaaGAATAGGAACTTC3'

for which flippase (Flp) binds to both 13-bp 5'-GAAGTTCCTATTC-3' arms flanking the 8 bp spacer, i.e. the site-specific recombination (region of crossover) in reverse orientation. FRT-mediated cleavage occurs just ahead from the asymmetric 8bp core region (5'tctagaaa3') on the top strand and behind this sequence on the bottom strand. Several variant FRT sites exist, but recombination can usually occur only between two identical FRTs but generally not among non-identical ("heterospecific") FRTs.