Gauss–Kuzmin distribution

Gauss–Kuzmin
Probability mass function
Cumulative distribution function
Parameters (none)
Support
PMF
CDF
Mean
Median
Mode
Variance
Skewness (not defined)
Excess kurtosis (not defined)
Entropy 3.432527514776...

In mathematics, the Gauss–Kuzmin distribution is a discrete probability distribution that arises as the limit probability distribution of the coefficients in the continued fraction expansion of a random variable uniformly distributed in (0, 1). The distribution is named after Carl Friedrich Gauss, who derived it around 1800, and Rodion Kuzmin, who gave a bound on the rate of convergence in 1929. It is given by the probability mass function