| Generalized Pareto distribution | 
|---|
| Probability density function GPD distribution functions for    and different values of    and   | 
| Cumulative distribution function | 
| Parameters |  location (real) 
  scale (real) 
  shape (real) | 
|---|
| Support |  
  | 
|---|
| PDF | where 
  | 
|---|
| CDF |  | 
|---|
| Mean |  | 
|---|
| Median |  | 
|---|
| Mode |  | 
|---|
| Variance |  | 
|---|
| Skewness |  | 
|---|
| Excess kurtosis |  | 
|---|
| Entropy |  | 
|---|
| MGF | ![{\displaystyle e^{\theta \mu }\,\sum _{j=0}^{\infty }\left[{\frac {(\theta \sigma )^{j}}{\prod _{k=0}^{j}(1-k\xi )}}\right],\;(k\xi <1)}](./41cf9f358ac58dcba4130cba492879256576e783.svg) | 
|---|
| CF | ![{\displaystyle e^{it\mu }\,\sum _{j=0}^{\infty }\left[{\frac {(it\sigma )^{j}}{\prod _{k=0}^{j}(1-k\xi )}}\right],\;(k\xi <1)}](./53bfef161abce3834ebc5908620389e3174d612f.svg) | 
|---|
| Method of moments | ![{\displaystyle \xi ={\frac {1}{2}}\left(1-{\frac {(E[X]-\mu )^{2}}{V[X]}}\right)}](./029894dab6a61a875e17d8ee5f27c7fe52dc4a89.svg)  
 ![{\displaystyle \sigma =(E[X]-\mu )(1-\xi )}](./7ae5aff7c32202ca44e85df4abac26bc3e6deb14.svg) | 
|---|
| Expected shortfall | ![{\displaystyle {\begin{cases}\mu +\sigma \left[{\frac {(1-p)^{-\xi }}{1-\xi }}+{\frac {(1-p)^{-\xi }-1}{\xi }}\right]&,\xi \neq 0\\\mu +\sigma [1-\ln(1-p)]&,\xi =0\end{cases}}}](./6bc74279810afb129d46a109e805e2080a8a0c33.svg) | 
|---|