Cretoxyrhina

Cretoxyrhina
Temporal range: Albian-Campanian,
Cretoxyrhina mantelli tooth from New Jersey, USA; Naturhistorisches Museum (Vienna)
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Chondrichthyes
Subclass: Elasmobranchii
Division: Selachii
Order: Lamniformes
Family: Cretoxyrhinidae
Glückman, 1958
Genus: Cretoxyrhina
Glückman, 1958
Type species
Cretoxyrhina mantelli
(Agassiz, 1835)
Other species
  • C. denticulata (Glückman, 1957)
  • C. vraconensis (Zhelezko, 2000)
  • C. agassizensis (Underwood & Cumbaa, 2010)
Synonyms
List of synonyms
  • Genus Squalus
      • Squalus mustelus Mantell, 1822
      • Squalus zygaena Mantell, 1822
      • Squalus acaule Nilsson, 1827
    Genus Lamna
      • Lamna mantellii Agassiz, 1835
      • Lamna acuminata Agassiz, 1838
      • Lamna cornubica Schimdt, 1846
      • Lamna petricoriensis Coquand, 1860
      • Lamna (Sphenodus) longidens Agassiz, 1876
    Genus Oxyrhina
      • Oxyrhina mantellii Agassiz, 1838
      • Oxyrhina subinflata Agassiz, 1876
      • Oxyrhina extenta Leidy, 1873
    Genus Otodus
      • Otodus appendiculatus Agassiz, 1838
      • Otodus oxyrhinoides Sauvage, 1870
    Genus Isurus
      • Isurus mantelli Agassiz, 1843
      • Isurus denticulatus Glückman, 1957
    Genus Pseudoisurus
      • Pseudoisurus mantelli Zhelezko, 2000
      • Pseudoisurus vraconensis Zhelezko, 2000
    Genus Telodontaspis
      • Telodontaspis agassizensis Underwood & Cumbaa, 2010

Cretoxyrhina (/krɪˌtɒksiˈrhnə/; meaning 'Cretaceous sharp-nose') is an extinct genus of large mackerel shark that lived about 107 to 73 million years ago during the late Albian to late Campanian of the Late Cretaceous. The type species, C. mantelli, is more commonly referred to as the Ginsu shark, first popularized in reference to the Ginsu knife, as its theoretical feeding mechanism is often compared with the "slicing and dicing" when one uses the knife. Cretoxyrhina is traditionally classified as the likely sole member of the family Cretoxyrhinidae but other taxonomic placements have been proposed, such as within the Alopiidae and Lamnidae.

Measuring up to 8 m (26 ft) in length and weighing over 4,944 kg (10,900 lb), Cretoxyrhina was one of the largest sharks of its time. Having a similar appearance and build to the modern great white shark, it was an apex predator in its ecosystem and preyed on a large variety of marine animals including mosasaurs, plesiosaurs, sharks and other large fish, pterosaurs, and occasionally dinosaurs. Its teeth, up to 8 cm (3.1 in) long, were razor-like and had thick enamel built for stabbing and slicing prey. Cretoxyrhina was also among the fastest-swimming sharks, with hydrodynamic calculations suggesting burst speeds of up to 70 km/h (43 mph). It has been speculated that Cretoxyrhina hunted by lunging at its prey at high speeds to inflict powerful blows, similar to the great white shark today, and relied on strong eyesight to do so.

Since the late 19th century, several fossils of exceptionally well-preserved skeletons of Cretoxyrhina have been discovered in Kansas. Studies have successfully calculated its life history using vertebrae from some of the skeletons. Cretoxyrhina grew rapidly during early ages and reached sexual maturity at around four to five years of age. Its lifespan has been calculated to extend to nearly forty years. Anatomical analysis of the Cretoxyrhina skeletons revealed that the shark possessed facial and optical features most similar to that in thresher sharks and crocodile sharks and had a hydrodynamic build that suggested the use of regional endothermy.

As an apex predator, Cretoxyrhina played a critical role in the marine ecosystems it inhabited. It was a cosmopolitan genus and its fossils have been found worldwide, although most frequently in the Western Interior Seaway area of North America. It preferred mainly subtropical to temperate pelagic environments but was known in waters as cold as 5 °C (41 °F). Cretoxyrhina saw its peak in size by the Coniacian, but subsequently experienced a continuous decline until its extinction during the Campanian. One factor in this demise may have been increasing pressure from competition with predators that arose around the same time, most notably the giant mosasaur Tylosaurus. Other possible factors include the gradual disappearance of the Western Interior Seaway.