Glycylglycine

Glycylglycine
Names
IUPAC name
Glycylglycine
Systematic IUPAC name
(2-Aminoacetamido)acetic acid
Other names
  • Diglycine
  • Diglycocoll
  • Glycine dipeptide
  • Glycyl-glycine
  • N-Glycylglycine
Identifiers
3D model (JSmol)
Abbreviations Gly-Gly
1765223
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.008.299
EC Number
  • 209-127-8
82735
KEGG
MeSH Glycylglycine
UNII
  • InChI=1S/C4H8N2O3/c5-1-3(7)6-2-4(8)9/h1-2,5H2,(H,6,7)(H,8,9) Y
    Key: YMAWOPBAYDPSLA-UHFFFAOYSA-N Y
  • NCC(=O)NCC(O)=O
Properties
C4H8N2O3
Molar mass 132.119 g·mol−1
Appearance White crystals
132 g L−1 (at 20 °C)
log P −2.291
Acidity (pKa) 3.133
Basicity (pKb) 10.864
UV-vismax) 260 nm
Absorbance 0.075
Thermochemistry
163.97 J K−1 mol−1
180.3 J K−1 mol−1
−749.0 to −746.4 kJ mol−1
−1.9710 to −1.9684 MJ mol−1
Hazards
GHS labelling:
Warning
H319
P305+P351+P338
Related compounds
Related alkanoic acids
Related compounds
N-Acetylglycinamide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Glycylglycine is the dipeptide of glycine, making it the simplest peptide. The compound was first synthesized by Emil Fischer and Ernest Fourneau in 1901 by boiling 2,5-diketopiperazine (glycine anhydride) with hydrochloric acid. Shaking with alkali and other synthesis methods have been reported.

Because of its low toxicity, it is useful as a buffer for biological systems with effective ranges between pH 2.5–3.8 and 7.5–8.9; however, it is only moderately stable for storage once dissolved. It is used in the synthesis of more complex peptides.

Glycylglycine has also been reported to be helpful in solubilizing recombinant proteins in E. coli. Using different concentrations of the glycylglycine improvement in protein solubility after cell lysis has been observed.