Integrin-linked kinase

ILK
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesILK, HEL-S-28, ILK-1, ILK-2, P59, p59integrin linked kinase
External IDsOMIM: 602366; MGI: 1195267; HomoloGene: 3318; GeneCards: ILK; OMA:ILK - orthologs
Orthologs
SpeciesHumanMouse
Entrez

3611

16202

Ensembl

ENSG00000166333

ENSMUSG00000030890

UniProt

Q13418

O55222

RefSeq (mRNA)

NM_001014794
NM_001014795
NM_001278441
NM_001278442
NM_004517

NM_001161724
NM_010562

RefSeq (protein)

NP_001014794
NP_001014795
NP_001265370
NP_001265371
NP_004508

NP_001155196
NP_034692

Location (UCSC)Chr 11: 6.6 – 6.61 MbChr 7: 105.39 – 105.39 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Integrin-linked kinase is an enzyme that in humans is encoded by the ILK gene involved with integrin-mediated signal transduction. Mutations in ILK are associated with cardiomyopathies. It is a 59kDa protein originally identified in a yeast-two hybrid screen with integrin β1 as the bait protein. Since its discovery, ILK has been associated with multiple cellular functions including cell migration, proliferation, and adhesion.

Integrin-linked kinases (ILKs) are a subfamily of Raf-like kinases (RAF). The structure of ILK consists of three features: 5 ankyrin repeats in the N-terminus, Phosphoinositide binding motif and extreme N-terminus of kinase catalytic domain. Integrins lack enzymatic activity and depend on adapters to signal proteins. ILK is linked to beta-1 and beta-3 integrin cytoplasmic domains and is one of the best described integrins. Although first described as a serine/threonine kinase by Hannigan, important motifs of ILK kinases are still uncharacterized. ILK is thought to have a role in development regulation and tissue homeostasis, however it was found that in flies, worms and mice ILK activity isn't required to regulate these processes.

Animal ILKs have been linked to the pinch- parvin complex which control muscle development. Mice lacking ILK were embryonic lethal due to lack of organized muscle cell development. In mammals ILK lacks catalytic activity but supports scaffolding protein functions for focal adhesions. In plants, ILKs signal complexes to focal adhesion sites. ILKs of plants contain multiple ILK genes. Unlike animals that contain few ILK genes ILKs have been found to possess oncogenic properties. ILKs control the activity of serine/threonine phosphatases.