Inorganic pyrophosphatase

inorganic pyrophosphatase
Pyrophosphatase (inorganic) hexamer, E.Coli
Identifiers
EC no.3.6.1.1
CAS no.9024-82-2
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
Soluble inorganic pyrophosphatase
Structure of soluble inorganic pyrophosphatase, isolated from Thermococcus litoralis (PDB: 2PRD).
Identifiers
SymbolPyrophosphatase
PfamPF00719
InterProIPR008162
PROSITEPS00387
CATH2prd
SCOP22prd / SCOPe / SUPFAM
CDDcd00412
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
pyrophosphatase (inorganic) 1
Identifiers
SymbolPPA1
Alt. symbolsPP
NCBI gene5464
HGNC9226
OMIM179030
RefSeqNM_021129
UniProtQ15181
Other data
LocusChr. 10 q11.1-q24
Search for
StructuresSwiss-model
DomainsInterPro
pyrophosphatase (inorganic) 2
Identifiers
SymbolPPA2
NCBI gene27068
HGNC28883
OMIM609988
RefSeqNM_176869
UniProtQ9H2U2
Other data
LocusChr. 4 q25
Search for
StructuresSwiss-model
DomainsInterPro

Inorganic pyrophosphatase (or inorganic diphosphatase, PPase) is an enzyme (EC 3.6.1.1) that catalyzes the conversion of one ion of pyrophosphate to two phosphate ions. This is a highly exergonic reaction, and therefore can be coupled to unfavorable biochemical transformations in order to drive these transformations to completion. The functionality of this enzyme plays a critical role in lipid metabolism (including lipid synthesis and degradation), calcium absorption and bone formation, and DNA synthesis, as well as other biochemical transformations.

Two types of inorganic diphosphatase, very different in terms of both amino acid sequence and structure, have been characterised to date: soluble and transmembrane proton-pumping pyrophosphatases (sPPases and H(+)-PPases, respectively). sPPases are ubiquitous proteins that hydrolyse pyrophosphate to release heat, whereas H+-PPases, so far unidentified in animal and fungal cells, couple the energy of PPi hydrolysis to proton movement across biological membranes.