Jaynes–Cummings model

In quantum optics, the Jaynes–Cummings model (sometimes abbreviated JCM) is a theoretical model that describes the system of a two-level atom interacting with a quantized mode of an optical cavity (or a bosonic field), with or without the presence of light (in the form of a bath of electromagnetic radiation that can cause spontaneous emission and absorption). It was originally developed to study the interaction of atoms with the quantized electromagnetic field in order to investigate the phenomena of spontaneous emission and absorption of photons in a cavity. It is named after Edwin Thompson Jaynes and Fred Cummings in the 1960s and was confirmed experimentally in 1987.

The Jaynes–Cummings model is of great interest to atomic physics, quantum optics, solid-state physics and quantum information circuits, both experimentally and theoretically. Journal special issues have commemorated the 50th anniversary, (which contains numerous relevant articles, including two interesting editorials, one by Cummings), and 60th anniversary. It also has applications in coherent control and quantum information processing.