Knapsack problem

The knapsack problem is the following problem in combinatorial optimization:

Given a set of items, each with a weight and a value, determine which items to include in the collection so that the total weight is less than or equal to a given limit and the total value is as large as possible.

It derives its name from the problem faced by someone who is constrained by a fixed-size knapsack and must fill it with the most valuable items. The problem often arises in resource allocation where the decision-makers have to choose from a set of non-divisible projects or tasks under a fixed budget or time constraint, respectively.

The knapsack problem has been studied for more than a century, with early works dating as far back as 1897.

The subset sum problem is a special case of the decision and 0-1 problems where each kind of item, the weight equals the value: . In the field of cryptography, the term knapsack problem is often used to refer specifically to the subset sum problem. The subset sum problem is one of Karp's 21 NP-complete problems.