Complex lamellar vector field
In vector calculus, a complex lamellar vector field is a vector field which is orthogonal to a family of surfaces. In the broader context of differential geometry, complex lamellar vector fields are more often called hypersurface-orthogonal vector fields. They can be characterized in a number of different ways, many of which involve the curl. A lamellar vector field is a special case given by vector fields with zero curl.
The adjective "lamellar" derives from the noun "lamella", which means a thin layer. The lamellae to which "lamellar vector field" refers are the surfaces of constant potential, or in the complex case, the surfaces orthogonal to the vector field.