Lenstra–Lenstra–Lovász lattice basis reduction algorithm
The Lenstra–Lenstra–Lovász (LLL) lattice basis reduction algorithm is a polynomial time lattice reduction algorithm invented by Arjen Lenstra, Hendrik Lenstra and László Lovász in 1982. Given a basis with n-dimensional integer coordinates, for a lattice L (a discrete subgroup of Rn) with , the LLL algorithm calculates an LLL-reduced (short, nearly orthogonal) lattice basis in time where is the largest length of under the Euclidean norm, that is, .
The original applications were to give polynomial-time algorithms for factorizing polynomials with rational coefficients, for finding simultaneous rational approximations to real numbers, and for solving the integer linear programming problem in fixed dimensions.