Lev Landau

Lev Landau
Лев Ландау
Landau in 1962
Born
Lev Davidovich Landau

(1908-01-22)22 January 1908
Died 1 April 1968(1968-04-01) (aged 60)
Resting placeNovodevichy Cemetery, Moscow
EducationBaku Economical Technical School
Alma materBaku State University
Leningrad State University (diploma, 1927)
Leningrad Physico-Technical Institute (D.Sc., 1934)
Known for
SpouseK. T. Drobanzeva (married 1937; 1 child) (1908–1984)
AwardsStalin Prize (1946)
Max Planck Medal (1960)
Fritz London Memorial Prize (1960)
Nobel Prize in Physics (1962)
Scientific career
FieldsTheoretical physics
InstitutionsKharkiv Polytechnic Institute and Kharkiv University (later Kharkiv Institute of Physics and Technology)
Institute for Physical Problems (RAS)
MSU Faculty of Physics
Academic advisorsNiels Bohr
Doctoral studentsAlexei Alexeyevich Abrikosov
Aleksandr Ilyich Akhiezer
Igor Ekhielevich Dzyaloshinskii
Lev Gor'kov
Isaak Markovich Khalatnikov
Lev Petrovich Pitaevskii
Other notable studentsEvgeny Lifshitz

Lev Davidovich Landau (Russian: Лев Дави́дович Ланда́у; 22 January 1908 – 1 April 1968) was a Soviet physicist who made fundamental contributions to many areas of theoretical physics. He was considered as one of the last scientists who were universally well-versed and made seminal contributions to all branches of physics. He is credited with laying the foundations of twentieth century condensed matter physics, and is also considered arguably the greatest Soviet theoretical physicist.

His accomplishments include the independent co-discovery of the density matrix method in quantum mechanics (alongside John von Neumann), the quantum mechanical theory of diamagnetism, the theory of superfluidity, the theory of second-order phase transitions, invention of order parameter technique, the Ginzburg–Landau theory of superconductivity, the theory of Fermi liquids, the explanation of Landau damping in plasma physics, the Landau pole in quantum electrodynamics, the two-component theory of neutrinos, and Landau's equations for S-matrix singularities. He received the 1962 Nobel Prize in Physics for his development of a mathematical theory of superfluidity that accounts for the properties of liquid helium II at a temperature below 2.17 K (−270.98 °C).