Dilithium acetylide

Dilithium acetylide
LiC≡CLi
Names
Preferred IUPAC name
Lithium acetylide
Systematic IUPAC name
Lithium ethynediide
Other names
  • Dilithium acetylide
  • Lithium dicarbon
  • Lithium percarbide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.012.710
EC Number
  • 213-980-1
UNII
  • InChI=1S/C2.2Li/c1-2;;/q-2;2*+1 Y
    Key: ARNWQMJQALNBBV-UHFFFAOYSA-N Y
  • InChI=1S/C2.2Li/c1-2;;/q-2;2*+1
    Key: ARNWQMJQALNBBV-UHFFFAOYSA-N
  • InChI=1/C2.2Li/c1-2;;/q-2;2*+1
    Key: ARNWQMJQALNBBV-UHFFFAOYAB
  • [Li+].[Li+].[C-]#[C-]
Properties
Li2C2
Molar mass 37.9034 g/mol
Appearance Powder
Density 1.3 g/cm3
Melting point 452°C
Reacts
Solubility insoluble in organic solvents
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)
Infobox references

Dilithium acetylide is an organometallic compound with the formula Li2C2. It is typically derived by double deprotonation of acetylene. X-ray crystallography confirms the presence of C≡C subunits attached to lithium, resulting in a polymeric structure. Li2C2 is one of an extensive range of lithium-carbon compounds, which include the lithium-rich Li4C, Li6C2, Li8C3, Li6C3, Li4C3, Li4C5, and the graphite intercalation compounds LiC6, LiC12, and LiC18. It is an intermediate compound produced during radiocarbon dating procedures.

Li2C2 is the most thermodynamically-stable lithium-rich carbide and the only one that can be obtained directly from the elements. It was first produced by Moissan, in 1896 who reacted coal with lithium carbonate.

Li2CO3 + 4 C → Li2C2 + 3 CO

The other lithium-rich compounds are produced by reacting lithium vapor with chlorinated hydrocarbons, e.g. CCl4. Lithium carbide is sometimes confused with the drug lithium carbonate, Li2CO3, because of the similarity of its name.