Silverman–Toeplitz theorem

In mathematics, the Silverman–Toeplitz theorem, first proved by Otto Toeplitz, is a result in series summability theory characterizing matrix summability methods that are regular. A regular matrix summability method is a linear sequence transformation that preserves the limits of convergent sequences. The linear sequence transformation can be applied to the divergent sequences of partial sums of divergent series to give those series generalized sums.

An infinite matrix with complex-valued entries defines a regular matrix summability method if and only if it satisfies all of the following properties:

An example is Cesàro summation, a matrix summability method with