Matrix t-distribution

Matrix t
Notation
Parameters

location (real matrix)
scale (positive-definite real matrix)
scale (positive-definite real matrix)

degrees of freedom (real)
Support
PDF

CDF No analytic expression
Mean if , else undefined
Mode
Variance if , else undefined
CF see below

In statistics, the matrix t-distribution (or matrix variate t-distribution) is the generalization of the multivariate t-distribution from vectors to matrices.

The matrix t-distribution shares the same relationship with the multivariate t-distribution that the matrix normal distribution shares with the multivariate normal distribution: If the matrix has only one row, or only one column, the distributions become equivalent to the corresponding (vector-)multivariate distribution. The matrix t-distribution is the compound distribution that results from an infinite mixture of a matrix normal distribution with an inverse Wishart distribution placed over either of its covariance matrices, and the multivariate t-distribution can be generated in a similar way.

In a Bayesian analysis of a multivariate linear regression model based on the matrix normal distribution, the matrix t-distribution is the posterior predictive distribution.