McKay graph
Affine (extended) Dynkin diagrams |
In mathematics, the McKay graph of a finite-dimensional representation V of a finite group G is a weighted quiver encoding the structure of the representation theory of G. Each node represents an irreducible representation of G. If χ i, χ j are irreducible representations of G, then there is an arrow from χ i to χ j if and only if χ j is a constituent of the tensor product Then the weight nij of the arrow is the number of times this constituent appears in For finite subgroups H of the McKay graph of H is the McKay graph of the defining 2-dimensional representation of H.
If G has n irreducible characters, then the Cartan matrix cV of the representation V of dimension d is defined by where δ is the Kronecker delta. A result by Robert Steinberg states that if g is a representative of a conjugacy class of G, then the vectors are the eigenvectors of cV to the eigenvalues where χV is the character of the representation V.
The McKay correspondence, named after John McKay, states that there is a one-to-one correspondence between the McKay graphs of the finite subgroups of and the extended Dynkin diagrams, which appear in the ADE classification of the simple Lie algebras.