NAD+ glycohydrolase
| NAD+ glycohydrolase | |||||||||
|---|---|---|---|---|---|---|---|---|---|
| Identifiers | |||||||||
| EC no. | 3.2.2.5 | ||||||||
| CAS no. | 9032-65-9 | ||||||||
| Databases | |||||||||
| IntEnz | IntEnz view | ||||||||
| BRENDA | BRENDA entry | ||||||||
| ExPASy | NiceZyme view | ||||||||
| KEGG | KEGG entry | ||||||||
| MetaCyc | metabolic pathway | ||||||||
| PRIAM | profile | ||||||||
| PDB structures | RCSB PDB PDBe PDBsum | ||||||||
| Gene Ontology | AmiGO / QuickGO | ||||||||
| |||||||||
In enzymology, a NAD+ glycohydrolase (EC 3.2.2.5) is an enzyme that catalyzes the chemical reaction
- NAD+ + H2O ADP-ribose + nicotinamide
Thus, the two substrates of this enzyme are NAD+ and H2O, whereas its two products are ADP-ribose and nicotinamide. Unlike ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase (EC 3.2.2.6), which catalyzes the same reaction, this reaction does not proceed through a cyclic ADP-ribose.
This enzyme participates in nicotinate and nicotinamide metabolism and calcium signaling pathway. Calcium metabolism involves the regulation of the levels of calcium in the body. The role this calcium plays also includes providing enough calcium for bone mineralization. It serves as the basis for the structure and rigidity of bones. Calcium metabolism can lead to a variety of diseases which can involve renal function. High concentrations of calcium can lead to cell death or apoptosis.