NIRCam

NIRCam (Near-InfraRed Camera) is an instrument aboard the James Webb Space Telescope. It has two major tasks, as an imager from 0.6 to 5 μm wavelength, and as a wavefront sensor to keep the 18-section mirrors functioning as one. In other words, it is a camera and is also used to provide information to align the 18 segments of the primary mirror. It is an infrared camera with ten mercury-cadmium-telluride (HgCdTe) detector arrays, and each array has an array of 2048×2048 pixels. The camera has a field of view of 2.2×2.2 arcminutes with an angular resolution of 0.07 arcseconds at 2 μm. NIRCam is also equipped with coronagraphs, which helps to collect data on exoplanets near stars. It helps with imaging anything next to a much brighter object, because the coronagraph blocks that light.

NIRCam is housed in the Integrated Science Instrument Module (ISIM). It is connected to the ISIM mechanically with a system of kinematic mounts in the structural form of struts. There are thermal straps connecting the NIRCam optical bench assembly to the ISIM structure and to thermal radiators. It is designed to operate between 32 K (−241.2 °C; −402.1 °F) and 37 K (−236.2 °C; −393.1 °F). The Focal Plane Electronics operate at 290 K.

NIRCam should be able to observe objects as faint as magnitude +29 with a 10,000-second exposure (about 2.8 hours). It makes these observations in light from 0.6 to 5 μm (600 to 5000 nm) wavelength. It can observe in two fields of view, and either side can do imaging, or from the capabilities of the wave-front sensing equipment, spectroscopy. The wavefront sensing is much finer than the thickness of an average human hair. It must perform at an accuracy of at least 93 nanometers and in testing it has even achieved between 32 and 52 nm. A human hair is thousands of nanometers across.