Nielsen–Ninomiya theorem
In lattice field theory, the Nielsen–Ninomiya theorem is a no-go theorem about placing chiral fermions on a lattice. In particular, under very general assumptions such as locality, hermiticity, and translational symmetry, any lattice formulation of chiral fermions necessarily leads to fermion doubling, where there are the same number of left-handed and right-handed fermions. It was first proved by Holger Bech Nielsen and Masao Ninomiya in 1981 using two methods, one that relied on homotopy theory and another that relied on differential topology. Another proof provided by Daniel Friedan uses differential geometry. The theorem was also generalized to any regularization scheme of chiral theories. One consequence of the theorem is that the Standard Model cannot be put on a lattice. Common methods for overcoming the fermion doubling problem is to use modified fermion formulations such as staggered fermions, Wilson fermions, or Ginsparg–Wilson fermions, among others.