Melanopsin

OPN4
Identifiers
AliasesOPN4, MOP, opsin 4
External IDsOMIM: 606665; MGI: 1353425; HomoloGene: 69152; GeneCards: OPN4; OMA:OPN4 - orthologs
Orthologs
SpeciesHumanMouse
Entrez

94233

30044

Ensembl

ENSG00000122375

ENSMUSG00000021799

UniProt

Q9UHM6

Q9QXZ9

RefSeq (mRNA)

NM_033282
NM_001030015

NM_001128599
NM_013887

RefSeq (protein)

NP_001025186
NP_150598

NP_001122071
NP_038915

Location (UCSC)Chr 10: 86.65 – 86.67 MbChr 14: 34.31 – 34.32 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Melanopsin is a type of photopigment belonging to a larger family of light-sensitive retinal proteins called opsins and encoded by the gene Opn4. In the mammalian retina, there are two additional categories of opsins, both involved in the formation of visual images: rhodopsin and photopsin (types I, II, and III) in the rod and cone photoreceptor cells, respectively.

In humans, melanopsin is found in intrinsically photosensitive retinal ganglion cells (ipRGCs). It is also found in the iris of mice and primates. Melanopsin is also found in rats, amphioxus, and other chordates. ipRGCs are photoreceptor cells which are particularly sensitive to the absorption of short-wavelength (blue) visible light and communicate information directly to the area of the brain called the suprachiasmatic nucleus (SCN), also known as the central "body clock", in mammals. Melanopsin plays an important non-image-forming role in the setting of circadian rhythms as well as other functions. Mutations in the Opn4 gene can lead to clinical disorders, such as Seasonal Affective Disorder (SAD). According to one study, melanopsin has been found in eighteen sites in the human brain (outside the retinohypothalamic tract), intracellularly, in a granular pattern, in the cerebral cortex, the cerebellar cortex and several phylogenetically old regions, primarily in neuronal soma, not in nuclei. Melanopsin is also expressed in human cones. However, only 0.11% to 0.55% of human cones express melanopsin and are exclusively found in the peripheral regions of the retina. The human peripheral retina senses light at high intensities that is best explained by four different photopigment classes.