Omega-3 fatty acid

Omega−3 fatty acids, also called omega−3 oils, ω−3 fatty acids or n−3 fatty acids, are polyunsaturated fatty acids (PUFAs) characterized by the presence of a double bond three atoms away from the terminal methyl group in their chemical structure. They are widely distributed in nature, are important constituents of animal lipid metabolism, and play an important role in the human diet and in human physiology. The three types of omega−3 fatty acids involved in human physiology are α-linolenic acid (ALA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). ALA can be found in plants, while DHA and EPA are found in algae and fish. Marine algae and phytoplankton are primary sources of omega−3 fatty acids. DHA and EPA accumulate in fish that eat these algae. Common sources of plant oils containing ALA include walnuts, edible seeds, and flaxseeds as well as hempseed oil, while sources of EPA and DHA include fish and fish oils, and algae oil.

Almost without exception, animals are unable to synthesize the essential omega−3 fatty acid ALA and can only obtain it through diet. However, they can use ALA, when available, to form EPA and DHA, by creating additional double bonds along its carbon chain (desaturation) and extending it (elongation). Namely, ALA (18 carbons and 3 double bonds) is used to make EPA (20 carbons and 5 double bonds), which is then used to make DHA (22 carbons and 6 double bonds). The ability to make the longer-chain omega−3 fatty acids from ALA may be impaired in aging. In foods exposed to air, unsaturated fatty acids are vulnerable to oxidation and rancidity.

Omega−3 fatty acid supplementation has limited evidence of benefit in preventing cancer, all-cause mortality, and most cardiovascular outcomes, although it modestly lowers blood pressure and reduces triglycerides. Since 2002, the United States Food and Drug Administration (FDA) has approved four fish oil-based prescription drugs for the management of hypertriglyceridemia, namely Lovaza, Omtryg (both omega-3-acid ethyl esters), Vascepa (ethyl eicosapentaenoic acid), and Epanova (omega-3-carboxylic acids).