Order-4 apeirogonal tiling
| Order-4 apeirogonal tiling | |
|---|---|
| Poincaré disk model of the hyperbolic plane | |
| Type | Hyperbolic regular tiling | 
| Vertex configuration | ∞4 | 
| Schläfli symbol | {∞,4} r{∞,∞} t(∞,∞,∞) t0,1,2,3(∞,∞,∞,∞) | 
| Wythoff symbol | 4 | ∞ 2 2 | ∞ ∞ ∞ ∞ | ∞ | 
| Coxeter diagram | |
| Symmetry group | [∞,4], (*∞42) [∞,∞], (*∞∞2) [(∞,∞,∞)], (*∞∞∞) (*∞∞∞∞) | 
| Dual | Infinite-order square tiling | 
| Properties | Vertex-transitive, edge-transitive, face-transitive edge-transitive | 
In geometry, the order-4 apeirogonal tiling is a regular tiling of the hyperbolic plane. It has Schläfli symbol of {∞,4}.