Phytanoyl-CoA dioxygenase

phytanoyl-CoA dioxygenase
The structure of human PAHX (PDB: 2A1X). The Fe(II) cofactor is shown as an orange sphere, coordinated by two histidine and one aspartate residues (shown in green) and by the 2-oxoglutarate cosubstrate (shown in yellow).
Identifiers
EC no.1.14.11.18
CAS no.185402-46-4
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Gene OntologyAmiGO / QuickGO
Search
PMCarticles
PubMedarticles
NCBIproteins
phytanoyl-CoA 2-hydroxylase
Identifiers
SymbolPHYH
Alt. symbolsPAHX
NCBI gene5264
HGNC8940
OMIM602026
RefSeqNM_001037537
UniProtO14832
Other data
LocusChr. 10 p15.3-10p12.2
Search for
StructuresSwiss-model
DomainsInterPro

In enzymology, a phytanoyl-CoA dioxygenase (EC 1.14.11.18) is an enzyme that catalyzes the chemical reaction

phytanoyl-CoA + 2-oxoglutarate + O2 2-hydroxyphytanoyl-CoA + succinate + CO2

The three substrates of this enzyme are phytanoyl-CoA, 2-oxoglutarate (2OG), and O2, whereas its three products are 2-hydroxyphytanoyl-CoA, succinate, and CO2.

This enzyme belongs to the family of iron(II)-dependent oxygenases, which typically incorporate one atom of dioxygen into the substrate and one atom into the succinate carboxylate group. The mechanism is complex, but is believed to involve ordered binding of 2-oxoglutarate to the iron(II) containing enzyme followed by substrate. Binding of substrate causes displacement of a water molecule from the iron(II) cofactor, leaving a vacant coordination position to which dioxygen binds. A rearrangement occurs to form a high energy iron-oxygen species (which is generally thought to be an iron(IV)=O species) that performs the actual oxidation reaction.