Parkin (protein)

PRKN
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesPRKN, parkin RBR E3 ubiquitin protein ligase, AR-JP, LPRS2, PDJ, PARK2, Parkin
External IDsOMIM: 602544; MGI: 1355296; HomoloGene: 3355; GeneCards: PRKN; OMA:PRKN - orthologs
Orthologs
SpeciesHumanMouse
Entrez

5071

50873

Ensembl

ENSG00000185345

ENSMUSG00000023826

UniProt

O60260

Q9WVS6

RefSeq (mRNA)

NM_004562
NM_013987
NM_013988

NM_016694
NM_001317726

RefSeq (protein)

NP_004553
NP_054642
NP_054643

NP_001304655
NP_057903

Location (UCSC)Chr 6: 161.35 – 162.73 MbChr 17: 11.06 – 12.28 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Parkin is a 465-amino acid residue E3 ubiquitin ligase, a protein that in humans and mice is encoded by the PARK2 gene. Parkin plays a critical role in ubiquitination – the process whereby molecules are covalently labelled with ubiquitin (Ub) and directed towards degradation in proteasomes or lysosomes. Ubiquitination involves the sequential action of three enzymes. First, an E1 ubiquitin-activating enzyme binds to inactive Ub in eukaryotic cells via a thioester bond and mobilises it in an ATP-dependent process. Ub is then transferred to an E2 ubiquitin-conjugating enzyme before being conjugated to the target protein via an E3 ubiquitin ligase. There exists a multitude of E3 ligases, which differ in structure and substrate specificity to allow selective targeting of proteins to intracellular degradation.

In particular, parkin recognises proteins on the outer membrane of mitochondria upon cellular insult and mediates the clearance of damaged mitochondria via autophagy and proteasomal mechanisms. Parkin also enhances cell survival by suppressing both mitochondria-dependent and -independent apoptosis. Mutations are associated with mitochondrial dysfunction, leading to neuronal death in Parkinson's disease and aberrant metabolism in tumourigenesis.