Phosphorylase kinase

Phosphorylase kinase
Catalytic (gamma) subunit of phosphorylase kinase
Identifiers
EC no.2.7.11.19
CAS no.9001-88-1
Databases
IntEnzIntEnz view
BRENDABRENDA entry
ExPASyNiceZyme view
KEGGKEGG entry
MetaCycmetabolic pathway
PRIAMprofile
PDB structuresRCSB PDB PDBe PDBsum
Search
PMCarticles
PubMedarticles
NCBIproteins

Phosphorylase kinase (PhK) is a serine/threonine-specific protein kinase which activates glycogen phosphorylase to release glucose-1-phosphate from glycogen. PhK phosphorylates glycogen phosphorylase at two serine residues, triggering a conformational shift which favors the more active glycogen phosphorylase "a" form over the less active glycogen phosphorylase b.

The protein is a hexadecameric holoenzyme—that is, a homotetramer in which each subunit is itself a tetramer—arranged in an approximate "butterfly" shape. Each of the subunits is composed of an α, β, γ and δ subunit. The γ subunit is the site of the enzyme's catalytic activity while the other three subunits serve regulatory functions.

When unmodified, the α and β subunits inhibit the enzyme's catalysis, but phosphorylation of both these subunits by protein kinase A (PKA, or cAMP-dependent protein kinase) reduces their respective inhibitory activities. The δ subunit is the ubiquitous eukaryotic protein calmodulin which itself has 4 calcium ion binding sites. When cytosolic Ca2+ levels rise-to as low as 10−7 M—the δ subunit undergoes a large conformational change that activates the kinase's activity by binding to a complementary hydrophobic patch on the catalytic γ subunit.