Pyocyanin

Pyocyanin
Names
Preferred IUPAC name
5-Methylphenazin-1(5H)-one
Other names
Pyocyanin; Pyrocyanine; 5-Methyl-1(5H)-phenazinone; Sanasin; Sanazin
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.213.248
EC Number
  • 687-347-7
KEGG
MeSH D011710
UNII
  • InChI=1S/C13H10N2O/c1-15-10-6-3-2-5-9(10)14-13-11(15)7-4-8-12(13)16/h2-8H,1H3
    Key: YNCMLFHHXWETLD-UHFFFAOYSA-N
  • InChI=1/C13H10N2O/c1-15-10-6-3-2-5-9(10)14-13-11(15)7-4-8-12(13)16/h2-8H,1H3
    Key: YNCMLFHHXWETLD-UHFFFAOYAI
  • CN1C2=CC=CC=C2N=C3C1=CC=CC3=O
Properties
C13H10N2O
Molar mass 210.236 g·mol−1
Appearance Solid
Hazards
GHS labelling:
Danger
H302, H318
P264, P270, P280, P301+P312, P305+P351+P338, P310, P330, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)
Infobox references

Pyocyanin (PCN) is one of the many toxic compounds produced and secreted by the Gram negative bacterium Pseudomonas aeruginosa. Pyocyanin is a blue secondary metabolite, turning red below pH 4.9, with the ability to oxidise and reduce other molecules and therefore kill microbes competing against P. aeruginosa as well as mammalian cells of the lungs which P. aeruginosa has infected during cystic fibrosis. Since pyocyanin is a zwitterion at blood pH, it is easily able to cross the cell membrane. There are three different states in which pyocyanin can exist: oxidized (blue), monovalently reduced (colourless) or divalently reduced (red). Mitochondria play an important role in the cycling of pyocyanin between its redox states. Due to its redox-active properties, pyocyanin generates reactive oxygen species.