In machine learning, the radial basis function kernel, or RBF kernel, is a popular kernel function used in various kernelized learning algorithms. In particular, it is commonly used in support vector machine classification.
The RBF kernel on two samples  and
 and  , represented as feature vectors in some input space, is defined as
, represented as feature vectors in some input space, is defined as
 
 may be recognized as the squared Euclidean distance between the two feature vectors.
 may be recognized as the squared Euclidean distance between the two feature vectors.  is a free parameter. An equivalent definition involves a parameter
 is a free parameter. An equivalent definition involves a parameter  :
:
 
Since the value of the RBF kernel decreases with distance and ranges between zero (in the infinite-distance limit) and one (when x = x'), it has a ready interpretation as a similarity measure.
The feature space of the kernel has an infinite number of dimensions; for  , its expansion using the multinomial theorem is:
, its expansion using the multinomial theorem is:
![{\displaystyle {\begin{alignedat}{2}\exp \left(-{\frac {1}{2}}\|\mathbf {x} -\mathbf {x'} \|^{2}\right)&=\exp({\frac {2}{2}}\mathbf {x} ^{\top }\mathbf {x'} -{\frac {1}{2}}\|\mathbf {x} \|^{2}-{\frac {1}{2}}\|\mathbf {x'} \|^{2})\\[5pt]&=\exp(\mathbf {x} ^{\top }\mathbf {x'} )\exp(-{\frac {1}{2}}\|\mathbf {x} \|^{2})\exp(-{\frac {1}{2}}\|\mathbf {x'} \|^{2})\\[5pt]&=\sum _{j=0}^{\infty }{\frac {(\mathbf {x} ^{\top }\mathbf {x'} )^{j}}{j!}}\exp \left(-{\frac {1}{2}}\|\mathbf {x} \|^{2}\right)\exp \left(-{\frac {1}{2}}\|\mathbf {x'} \|^{2}\right)\\[5pt]&=\sum _{j=0}^{\infty }\quad \sum _{n_{1}+n_{2}+\dots +n_{k}=j}\exp \left(-{\frac {1}{2}}\|\mathbf {x} \|^{2}\right){\frac {x_{1}^{n_{1}}\cdots x_{k}^{n_{k}}}{\sqrt {n_{1}!\cdots n_{k}!}}}\exp \left(-{\frac {1}{2}}\|\mathbf {x'} \|^{2}\right){\frac {{x'}_{1}^{n_{1}}\cdots {x'}_{k}^{n_{k}}}{\sqrt {n_{1}!\cdots n_{k}!}}}\\[5pt]&=\langle \varphi (\mathbf {x} ),\varphi (\mathbf {x'} )\rangle \end{alignedat}}}](./42635ae6248d951f264fcbe473bef7130b2cb111.svg) 
 
where  ,
,
