| Raised cosine | 
|---|
| Probability density function 
 | 
| Cumulative distribution function 
 | 
| Parameters |  (real) 
  (real) | 
|---|
| Support | ![{\displaystyle x\in [\mu -s,\mu +s]\,}](./021cb61824dc30c9ce4228710410d45d7b8ea2dd.svg) | 
|---|
| PDF | ![{\displaystyle {\frac {1}{2s}}\left[1+\cos \left({\frac {x-\mu }{s}}\,\pi \right)\right]\,={\frac {1}{s}}\operatorname {hvc} \left({\frac {x-\mu }{s}}\,\pi \right)\,}](./0d8fe6565ff842d25cf9ac9946e3454f278992d8.svg) | 
|---|
| CDF | ![{\displaystyle {\frac {1}{2}}\left[1+{\frac {x-\mu }{s}}+{\frac {1}{\pi }}\sin \left({\frac {x-\mu }{s}}\,\pi \right)\right]}](./8a5fe6b908cecf264d0bc4a34c554b027ad3bb88.svg) | 
|---|
| Mean |  | 
|---|
| Median |  | 
|---|
| Mode |  | 
|---|
| Variance |  | 
|---|
| Skewness |  | 
|---|
| Excess kurtosis |  | 
|---|
| MGF |  | 
|---|
| CF |  | 
|---|
In probability theory and statistics, the raised cosine distribution is a continuous probability distribution supported on the interval ![{\displaystyle [\mu -s,\mu +s]}](./4092914759a1beeec30258141ccc43c0686f8459.svg) . The probability density function (PDF) is
. The probability density function (PDF) is
![{\displaystyle f(x;\mu ,s)={\frac {1}{2s}}\left[1+\cos \left({\frac {x-\mu }{s}}\,\pi \right)\right]\,={\frac {1}{s}}\operatorname {hvc} \left({\frac {x-\mu }{s}}\,\pi \right){\text{ for }}\mu -s\leq x\leq \mu +s}](./10e881d815068ad8b253740178c997fe2d569289.svg) 
and zero otherwise. The cumulative distribution function (CDF) is
![{\displaystyle F(x;\mu ,s)={\frac {1}{2}}\left[1+{\frac {x-\mu }{s}}+{\frac {1}{\pi }}\sin \left({\frac {x-\mu }{s}}\,\pi \right)\right]}](./d946fb3c3452f89b48341393ced089a0699fdffd.svg) 
for  and zero for
 and zero for  and unity for
 and unity for  .
.
The moments of the raised cosine distribution are somewhat complicated in the general case, but are considerably simplified for the standard raised cosine distribution. The standard raised cosine distribution is just the raised cosine distribution with  and
 and  . Because the standard raised cosine distribution is an even function, the odd moments are zero. The even moments are given by:
. Because the standard raised cosine distribution is an even function, the odd moments are zero. The even moments are given by:
![{\displaystyle {\begin{aligned}\operatorname {E} (x^{2n})&={\frac {1}{2}}\int _{-1}^{1}[1+\cos(x\pi )]x^{2n}\,dx=\int _{-1}^{1}x^{2n}\operatorname {hvc} (x\pi )\,dx\\[5pt]&={\frac {1}{n+1}}+{\frac {1}{1+2n}}\,_{1}F_{2}\left(n+{\frac {1}{2}};{\frac {1}{2}},n+{\frac {3}{2}};{\frac {-\pi ^{2}}{4}}\right)\end{aligned}}}](./bd88646853daa97101c07fa637ef17568602b698.svg) 
where  is a generalized hypergeometric function.
 is a generalized hypergeometric function.