Riemann–Roch theorem for surfaces

Riemann–Roch theorem for surfaces
FieldAlgebraic geometry
First proof byGuido Castelnuovo, Max Noether, Federigo Enriques
First proof in1886, 1894, 1896, 1897
GeneralizationsAtiyah–Singer index theorem
Grothendieck–Riemann–Roch theorem
Hirzebruch–Riemann–Roch theorem
ConsequencesRiemann–Roch theorem

In mathematics, the Riemann–Roch theorem for surfaces describes the dimension of linear systems on an algebraic surface. The classical form of it was first given by Castelnuovo (1896, 1897), after preliminary versions of it were found by Max Noether (1886) and Enriques (1894). The sheaf-theoretic version is due to Hirzebruch.