Scaled inverse chi-squared distribution

Scaled inverse chi-squared
Probability density function
Cumulative distribution function
Parameters
Support
PDF
CDF
Mean for
Mode
Variance for
Skewness for
Excess kurtosis for
Entropy

MGF
CF

The scaled inverse chi-squared distribution , where is the scale parameter, equals the univariate inverse Wishart distribution with degrees of freedom .

This family of scaled inverse chi-squared distributions is linked to the inverse-chi-squared distribution and to the chi-squared distribution:

If then as well as and .

Instead of , the scaled inverse chi-squared distribution is however most frequently parametrized by the scale parameter and the distribution is denoted by .


In terms of the above relations can be written as follows:

If then as well as and .


This family of scaled inverse chi-squared distributions is a reparametrization of the inverse-gamma distribution.

Specifically, if

  then  


Either form may be used to represent the maximum entropy distribution for a fixed first inverse moment and first logarithmic moment .

The scaled inverse chi-squared distribution also has a particular use in Bayesian statistics. Specifically, the scaled inverse chi-squared distribution can be used as a conjugate prior for the variance parameter of a normal distribution. The same prior in alternative parametrization is given by the inverse-gamma distribution.