In probability theory, Slepian's lemma (1962), named after David Slepian, is a Gaussian comparison inequality. It states that for Gaussian random variables
and
in
satisfying
,
![{\displaystyle \operatorname {E} [X_{i}^{2}]=\operatorname {E} [Y_{i}^{2}],\quad i=1,\dots ,n,{\text{ and }}\operatorname {E} [X_{i}X_{j}]\leq \operatorname {E} [Y_{i}Y_{j}]{\text{ for }}i\neq j.}](./f72cb860237916943d580ab7719bba4d74fc651b.svg)
the following inequality holds for all real numbers
:
![{\displaystyle \Pr \left[\bigcap _{i=1}^{n}\{X_{i}\leq u_{i}\}\right]\leq \Pr \left[\bigcap _{i=1}^{n}\{Y_{i}\leq u_{i}\}\right],}](./80a0df091217bd945cb711093965fa84f225c9f7.svg)
or equivalently,
![{\displaystyle \Pr \left[\bigcup _{i=1}^{n}\{X_{i}>u_{i}\}\right]\geq \Pr \left[\bigcup _{i=1}^{n}\{Y_{i}>u_{i}\}\right].}](./57f4d43735e868932db946a32eb58d611d3715b9.svg)
While this intuitive-seeming result is true for Gaussian processes, it is not in general true for other random variables—not even those with expectation 0.
As a corollary, if
is a centered stationary Gaussian process such that
for all
, it holds for any real number
that
![{\displaystyle \Pr \left[\sup _{t\in [0,T+S]}X_{t}\leq c\right]\geq \Pr \left[\sup _{t\in [0,T]}X_{t}\leq c\right]\Pr \left[\sup _{t\in [0,S]}X_{t}\leq c\right],\quad T,S>0.}](./21e996118382633e82d564d91717bf4d0b1d7c4f.svg)