Squeezed coherent state
In physics, a squeezed coherent state is a quantum state that is usually described by two non-commuting observables having continuous spectra of eigenvalues. Examples are position and momentum of a particle, and the (dimension-less) electric field in the amplitude (phase 0) and in the mode (phase 90°) of a light wave (the wave's quadratures). The product of the standard deviations of two such operators obeys the uncertainty principle:
- and , respectively.
Trivial examples, which are in fact not squeezed, are the ground state of the quantum harmonic oscillator and the family of coherent states . These states saturate the uncertainty above and have a symmetric distribution of the operator uncertainties with in "natural oscillator units" and .
The term squeezed state is actually used for states with a standard deviation below that of the ground state for one of the operators or for a linear combination of the two. The idea behind this is that the circle denoting the uncertainty of a coherent state in the quadrature phase space (see right) has been "squeezed" to an ellipse of the same area. Note that a squeezed state does not need to saturate the uncertainty principle.
Squeezed states of light were first produced in the mid 1980s. At that time, quantum noise squeezing by up to a factor of about 2 (3 dB) in variance was achieved, i.e. . As of 2017, a squeeze factor of 31 (15 dB) has been directly observed.