| Studentized range distribution |
|---|
|
Probability density function |
|
Cumulative distribution function |
| Parameters |
k > 1, the number of groups
> 0, the degrees of freedom |
|---|
| Support |
 |
|---|
| PDF |
![{\displaystyle {\begin{matrix}f_{\text{R}}(q;k,\nu )={\frac {\,{\sqrt {2\pi \,}}\,k\,(k-1)\,\nu ^{\nu /2}\,}{\Gamma (\nu /2)\,2^{\left(\nu /2-1\right)}}}\int _{0}^{\infty }s^{\nu }\,\varphi ({\sqrt {\nu \,}}\,s)\,\times \\[0.5em]\left[\int _{-\infty }^{\infty }\varphi (z+q\,s)\,\varphi (z)\,\left[\Phi (z+q\,s)-\Phi (z)\right]^{k-2}\,\mathrm {d} z\right]\,\mathrm {d} s\end{matrix}}}](./7a08d81086431dd9b1ebae17991b17d2ee4642b6.svg) |
|---|
| CDF |
![{\displaystyle {\begin{matrix}F_{\text{R}}(q;k,\nu )={\frac {\,{\sqrt {2\pi \,}}\,k\,\nu ^{\nu /2}\,}{\,\Gamma (\nu /2)\,2^{\left(\nu /2-1\right)}}}\int _{0}^{\infty }s^{\nu -1}\,\varphi ({\sqrt {\nu \,}}\,s)\,\times \\[0.5em]\qquad \left[\int _{-\infty }^{\infty }\varphi (z)\,\left[\Phi (z+q\,s)-\Phi (z)\right]^{k-1}\,\mathrm {d} z\right]\,\mathrm {d} s\end{matrix}}}](./b83772014edd9847eab4060054dce9407acffaf2.svg) |
|---|
In probability and statistics, studentized range distribution is the continuous probability distribution of the studentized range of an i.i.d. sample from a normally distributed population.
Suppose that we take a sample of size n from each of k populations with the same normal distribution N(μ, σ2) and suppose that
is the smallest of these sample means and
is the largest of these sample means, and suppose s² is the pooled sample variance from these samples. Then the following statistic has a Studentized range distribution.
