Temporal discretization

In applied physics and engineering, temporal discretization is a mathematical technique for solving transient problems, such as flow problems.

Transient problems are often solved using computer-aided engineering (CAE) simulations, which require discretizing the governing equations in both space and time. Temporal discretization involves the integration of every term in various equations over a time step ().

The spatial domain can be discretized to produce a semi-discrete form:

The first-order temporal discretization using backward differences is

And the second-order discretization is where

  • is a scalar
  • is the value at the next time,
  • is the value at the current time,
  • is the value at the previous time,

The function is evaluated using implicit- and explicit-time integration.