Thom's second isotopy lemma

In mathematics, especially in differential topology, Thom's second isotopy lemma is a family version of Thom's first isotopy lemma; i.e., it states a family of maps between Whitney stratified spaces is locally trivial when it is a Thom mapping. Like the first isotopy lemma, the lemma was introduced by René Thom.

(Mather 2012, § 11) gives a sketch of the proof. (Verona 1984) gives a simplified proof. Like the first isotopy lemma, the lemma also holds for the stratification with Bekka's condition (C), which is weaker than Whitney's condition (B).