Truncated square tiling

Truncated square tiling

TypeSemiregular tiling
Vertex configuration
4.8.8
Schläfli symbolt{4,4}
tr{4,4} or
Wythoff symbol2 | 4 4
4 4 2 |
Coxeter diagram
or
Symmetryp4m, [4,4], (*442)
Rotation symmetryp4, [4,4]+, (442)
Bowers acronymTosquat
DualTetrakis square tiling
PropertiesVertex-transitive

In geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}.

Conway calls it a truncated quadrille, constructed as a truncation operation applied to a square tiling (quadrille).

Other names used for this pattern include Mediterranean tiling and octagonal tiling, which is often represented by smaller squares, and nonregular octagons which alternate long and short edges.

There are 3 regular and 8 semiregular tilings in the plane.