Cauchy–Riemann equations
| Mathematical analysis → Complex analysis |
| Complex analysis |
|---|
| Complex numbers |
| Basic theory |
| Complex functions |
| Theorems |
| Geometric function theory |
| People |
In the field of complex analysis in mathematics, the Cauchy–Riemann equations, named after Augustin Cauchy and Bernhard Riemann, consist of a system of two partial differential equations which form a necessary and sufficient condition for a complex function of a complex variable to be complex differentiable.
These equations are
| 1a |
and
| 1b |
where u(x, y) and v(x, y) are real bivariate differentiable functions.
Typically, u and v are respectively the real and imaginary parts of a complex-valued function f(x + iy) = f(x, y) = u(x, y) + iv(x, y) of a single complex variable z = x + iy where x and y are real variables; u and v are real differentiable functions of the real variables. Then f is complex differentiable at a complex point if and only if the partial derivatives of u and v satisfy the Cauchy–Riemann equations at that point.
A holomorphic function is a complex function that is differentiable at every point of some open subset of the complex plane . It has been proved that holomorphic functions are analytic and analytic complex functions are complex-differentiable. In particular, holomorphic functions are infinitely complex-differentiable.
This equivalence between differentiability and analyticity is the starting point of all complex analysis.