Kerr–Newman metric
| General relativity |
|---|
|
The Kerr–Newman metric describes the spacetime geometry around a mass which is electrically charged and rotating. It is a vacuum solution which generalizes the Kerr metric (which describes an uncharged, rotating mass) by additionally taking into account the energy of an electromagnetic field, making it the most general asymptotically flat and stationary solution of the Einstein–Maxwell equations in general relativity. As an electrovacuum solution, it only includes those charges associated with the magnetic field; it does not include any free electric charges.
Because observed astronomical objects do not possess an appreciable net electric charge (the magnetic fields of stars arise through other processes), the Kerr–Newman metric is primarily of theoretical interest. The model lacks description of infalling baryonic matter, light (null dusts) or dark matter, and thus provides an incomplete description of stellar mass black holes and active galactic nuclei. The solution however is of mathematical interest and provides a fairly simple cornerstone for further exploration.
The Kerr–Newman solution is a special case of more general exact solutions of the Einstein–Maxwell equations with non-zero cosmological constant.