Neon

Neon, 10Ne
Neon
Appearancecolorless gas exhibiting an orange-red glow when placed in an electric field
Standard atomic weight Ar°(Ne)
  • 20.1797±0.0006
  • 20.180±0.001 (abridged)
Neon in the periodic table
Hydrogen Helium
Lithium Beryllium Boron Carbon Nitrogen Oxygen Fluorine Neon
Sodium Magnesium Aluminium Silicon Phosphorus Sulfur Chlorine Argon
Potassium Calcium Scandium Titanium Vanadium Chromium Manganese Iron Cobalt Nickel Copper Zinc Gallium Germanium Arsenic Selenium Bromine Krypton
Rubidium Strontium Yttrium Zirconium Niobium Molybdenum Technetium Ruthenium Rhodium Palladium Silver Cadmium Indium Tin Antimony Tellurium Iodine Xenon
Caesium Barium Lanthanum Cerium Praseodymium Neodymium Promethium Samarium Europium Gadolinium Terbium Dysprosium Holmium Erbium Thulium Ytterbium Lutetium Hafnium Tantalum Tungsten Rhenium Osmium Iridium Platinum Gold Mercury (element) Thallium Lead Bismuth Polonium Astatine Radon
Francium Radium Actinium Thorium Protactinium Uranium Neptunium Plutonium Americium Curium Berkelium Californium Einsteinium Fermium Mendelevium Nobelium Lawrencium Rutherfordium Dubnium Seaborgium Bohrium Hassium Meitnerium Darmstadtium Roentgenium Copernicium Nihonium Flerovium Moscovium Livermorium Tennessine Oganesson
He

Ne

Ar
fluorineneonsodium
Atomic number (Z)10
Groupgroup 18 (noble gases)
Periodperiod 2
Block  p-block
Electron configuration[He] 2s2 2p6
Electrons per shell2, 8
Physical properties
Phase at STPgas
Melting point24.56 K (−248.59 °C, −415.46 °F)
Boiling point27.104 K (−246.046 °C, −410.883 °F)
Density (at STP)0.9002 g/L
when liquid (at b.p.)1.207 g/cm3
Triple point24.556 K, 43.37 kPa
Critical point44.4918 K, 2.7686 MPa
Heat of fusion0.335 kJ/mol
Heat of vaporization1.71 kJ/mol
Molar heat capacity20.79 J/(mol·K)
Vapor pressure
P (Pa) 1 10 100 1 k 10 k 100 k
at T (K) 12 13 15 18 21 27
Atomic properties
Oxidation statescommon: (none)
0
Ionization energies
  • 1st: 2080.7 kJ/mol
  • 2nd: 3952.3 kJ/mol
  • 3rd: 6122 kJ/mol
  • (more)
Covalent radius58 pm
Van der Waals radius154 pm
Spectral lines of neon
Other properties
Natural occurrenceprimordial
Crystal structure face-centered cubic (fcc) (cF4)
Lattice constant
a = 453.77 pm (at triple point)
Thermal conductivity49.1×103 W/(m⋅K)
Magnetic orderingdiamagnetic
Molar magnetic susceptibility−6.74×10−6 cm3/mol (298 K)
Bulk modulus654 GPa
Speed of sound435 m/s (gas, at 0 °C)
CAS Number7440-01-9
History
Namingfrom the Greek word νέον, meaning 'new'
PredictionWilliam Ramsay (1897)
Discovery and first isolationWilliam Ramsay & Morris Travers (1898)
Isotopes of neon
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
20Ne 90.5% stable
21Ne 0.27% stable
22Ne 9.25% stable

Neon is a chemical element; it has symbol Ne and atomic number 10. It is the second noble gas in the periodic table. Neon is a colorless, odorless, inert monatomic gas under standard conditions, with approximately two-thirds the density of air.

Neon was discovered in 1898 alongside krypton and xenon, identified as one of the three remaining rare inert elements in dry air after the removal of nitrogen, oxygen, argon, and carbon dioxide. Its discovery was marked by the distinctive bright red emission spectrum it exhibited, leading to its immediate recognition as a new element. The name neon originates from the Greek word νέον, a neuter singular form of νέος (neos), meaning 'new'. Neon is a chemically inert gas; although neon compounds do exist, they are primarily ionic molecules or fragile molecules held together by van der Waals forces.

The synthesis of most neon in the cosmos resulted from the nuclear fusion within stars of oxygen and helium through the alpha-capture process. Despite its abundant presence in the universe and Solar System—ranking fifth in cosmic abundance following hydrogen, helium, oxygen, and carbon—neon is comparatively scarce on Earth. It constitutes about 18.2 ppm of Earth's atmospheric volume and a lesser fraction in the Earth's crust. The high volatility of neon and its inability to form compounds that would anchor it to solids explain its limited presence on Earth and the inner terrestrial planets. Neon’s high volatility facilitated its escape from planetesimals under the early Solar System's nascent Sun's warmth.

Neon's notable applications include its use in low-voltage neon glow lamps, high-voltage discharge tubes, and neon advertising signs, where it emits a distinct reddish-orange glow. This same red emission line is responsible for the characteristic red light of helium–neon lasers. Although neon has some applications in plasma tubes and as a refrigerant, its commercial uses are relatively limited. It is primarily obtained through the fractional distillation of liquid air, making it significantly more expensive than helium due to air being its sole source.