Peptidylglycine alpha-amidating monooxygenase

PAM
Identifiers
AliasesPAM, PAL, PHM, Peptidylglycine alpha-amidating monooxygenase
External IDsOMIM: 170270; MGI: 97475; HomoloGene: 37369; GeneCards: PAM; OMA:PAM - orthologs
Orthologs
SpeciesHumanMouse
Entrez

5066

18484

Ensembl

ENSG00000145730

ENSMUSG00000026335

UniProt

P19021

P97467

RefSeq (mRNA)

NM_013626
NM_001357127

RefSeq (protein)

NP_038654
NP_001344056

Location (UCSC)Chr 5: 102.75 – 103.03 MbChr 1: 97.8 – 98.1 Mb
PubMed search
Wikidata
View/Edit HumanView/Edit Mouse

Peptidyl-glycine alpha-amidating monooxygenase, or PAM, is an enzyme that catalyzes the conversion of an n+1 residue long peptide with a C-terminal glycine into an n-residue peptide with a terminal amide group. In the process, one molecule of O2 is consumed and the glycine residue is removed from the peptide and converted to glyoxylic acid.

The enzyme is involved in the biosynthesis of many signaling peptides and some fatty acid amides.

In humans, the enzyme is encoded by the PAM gene. This transformation is achieved by conversion of a prohormone to the corresponding amide (C(=O)NH2). This enzyme is the only known pathway for generating peptide amides. Replacing the carboxylic acid group with an amide group makes the peptide more hydrophobic and more likely to be neutrally charged at physiologic pH, and it is believed that these neutrally charged peptide amides can more easily bind to receptors.